Summary of Lecture 1 ( Nov . 14 , 2008 ) Scribe : Radha Krishna Ganti

نویسنده

  • Radha Krishna Ganti
چکیده

2 Basic Techniques Definition 1 (Increasing event) A RV X is increasing on (Ω,F) if X(ω) 6 X(ω′) whenever ω 6 ω′. it is decreasing if −X is increasing. An event A ∈ F is increasing whenever its indicator function is an increasing variable, i.e., if 1A(ω) 6 1A(ω) whenever ω 6 ω′. Example: 1. Increasing event: The event A(x, y) that there exists an open path joining x to y. 2. Increasing RV: The number N(x, y) of the number of different open paths between x and y. If A is an event on the probability space for bond percolation, then if A is an increasing event, Pp(A) 6 Pp′(A) whenever p 6 p′. 2.1 The FKG Inequality Named after Fortuin, Kasteleyn, and Ginebre. This was first proved by Harris in 1960. Expresses the fact that increasing events can only be positively correlated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Summary of Lecture 17 - Nov . 10 , 2008 Scribe : David Tisza

1 Executive Summary We have continued with a review on the bond percolation and the introduced the coupling of the bond percolation process, then defined the critical phenomenon and the percolation probability. There is a theorem about the percolation probability is a non decreasing function and we bounded it between 1/3 and 2/3 for the two dimensional case. 2 Bond Percolation 2.1 Preliminaries...

متن کامل

Entropy and Mutual Information of General Random Variables

Entropy and mutual information of random variables on general spaces are defined.

متن کامل

Limit of the Transport Capacity of a Dense Wire- Less Network

It is known that the transport capacity of a dense wireless ad hoc network with n nodes scales like √ n. We show that the transport capacity divided by √ n approaches a non-random limit with probability one when the nodes are i.i.d uniformly distributed on the unit square. To show the existence of the limit we prove that the transport capacity under the protocol model is a subadditive Euclidean...

متن کامل

Throughput versus routing overhead in large ad hoc networks

Consider a wireless ad hoc network with n nodes distributed uniformly on [0, 1]. The transport capacity (TC) of such a wireless network scales like √ n. To achieve this, each node should serve about √ n distinct information flows. So the routing table of each node should be of the order √ n bits. We show that if the size of the routing table is restricted to be of the order O(n), the maximum ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008